Gaussian Optimality for Derivatives of Differential Entropy Using Linear Matrix Inequalities
نویسندگان
چکیده
Let Z be a standard Gaussian random variable, X be independent of Z, and t be a strictly positive scalar. For the derivatives in t of the differential entropy of X + √ tZ, McKean noticed that Gaussian X achieves the extreme for the first and second derivatives, among distributions with a fixed variance, and he conjectured that this holds for general orders of derivatives. This conjecture implies that the signs of the derivatives alternate. Recently, Cheng and Geng proved that this alternation holds for the first four orders. In this work, we employ the technique of linear matrix inequalities to show that: firstly, Cheng and Geng’s method may not generalize to higher orders; secondly, when the probability density function of X + √ tZ is log-concave, McKean’s conjecture holds for orders up to at least five. As a corollary, we also recover Toscani’s result on the sign of the third derivative of the entropy power of X + √ tZ, using a much simpler argument.
منابع مشابه
Numerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملOn the solving of matrix equation of Sylvester type
A solution of two problems related to the matrix equation of Sylvester type is given. In the first problem, the procedures for linear matrix inequalities are used to construct the solution of this equation. In the second problem, when a matrix is given which is not a solution of this equation, it is required to find such solution of the original equation, which most accurately approximates the ...
متن کاملNumerical solution of linear control systems using interpolation scaling functions
The current paper proposes a technique for the numerical solution of linear control systems.The method is based on Galerkin method, which uses the interpolating scaling functions. For a highly accurate connection between functions and their derivatives, an operational matrix for the derivatives is established to reduce the problem to a set of algebraic equations. Several test problems are given...
متن کاملFrom Almost Gaussian to Gaussian
We consider lower and upper bounds on the difference of differential entropies of a Gaussian random vector and an approximately Gaussian random vector after they are “smoothed” by an arbitrarily distributed random vector of finite power. These bounds are important to establish the optimality of the corner points in the capacity region of Gaussian interference channels. A problematic issue in a ...
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Entropy
دوره 20 شماره
صفحات -
تاریخ انتشار 2018